Symbolic Computation of Secondary Bifurcations in a Parametrically Excited Simple Pendulum

نویسندگان

  • ERIC A. BUTCHER
  • S. C. SINHA
  • S. C. Sinha
چکیده

A symbolic computational technique is used to study the secondary bifurcations of a parametrically excited simple pendulum as an explicit function of the periodic parameter. This is made possible by the recent development of an algorithm which approximates the fundamental solution matrix of linear time-periodic systems in terms of system parameters in symbolic form. By evaluating this matrix at the end of the principal period, the parameter-dependent Floquet transition matrix (FTM), or the linear part of the Poincaré map, is obtained. The subsequent use of well-known criteria for the local stability and bifurcation conditions of equilibria and periodic solutions enables one to obtain the equations for the bifurcation boundaries in the parameter space. Since this method is not based on expansion in terms of a small parameter, it can successfully be applied to periodic systems whose internal excitation is strong. By repeating the linearization and computational procedure after each bifurcation of an equilibrium or periodic solution, it is shown how the bifurcation locations as well as the new linearized equations may be obtained in closed form as a function of the periodic parameter. Bifurcation diagrams are constructed and the results are compared with those obtained elsewhere using the point mapping method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complicated Regular and Chaotic Motions of the Parametrically Excited Pendulum

Several new types of regular and chaotic behavior of the parametrically driven pendulum are discovered with the help of computer simulations. A simple physical explanation is suggested to the phenomenon of subharmonic resonances. The boundaries of these resonances in the parameter space and the spectral composition of corresponding stationary oscillations are determined theoretically and verifi...

متن کامل

Stability Analysis in Parametrically Excited Electrostatic Torsional Micro-actuators

This paper addresses the static and dynamic stabilities of a parametrically excited torsional micro-actuator. The system is composed of a rectangular micro-mirror symmetrically suspended between two electrodes and acted upon by a steady (dc ) while simultaneously superimposed to an (ac ) voltage. First, the stability of the system subjected to a quasi-statically applied (dc ) voltage is investi...

متن کامل

Synchronization of chaos in non-identical parametrically excited systems

In this paper, we investigate the synchronization of chaotic systems consisting of non-identical parametrically excited oscillators. The active control technique is employed to design control functions based on Lyapunov stability theory and Routh–Hurwitz criteria so as to achieve global chaos synchronization between a parametrically excited gyroscope and each of the parametrically excited pendu...

متن کامل

An efficient analytical solution for nonlinear vibrations of a parametrically excited beam

An efficient and accurate analytical solution is provided using the homotopy-Pade technique for the nonlinear vibration of parametrically excited cantilever beams. The model is based on the Euler-Bernoulli assumption and includes third order nonlinear terms arisen from the inertial and curvature nonlinearities. The Galerkin’s method is used to convert the equation of motion to a nonlinear ordin...

متن کامل

Resurrection of An Inverted Pendulum

We study the bifurcations associated with stability of the inverted (stationary) state in the parametrically forced pendulum by varying the driving amplitude ǫ and frequency ω. We first note that the inverted state is unstable for ǫ = 0. However, as ǫ is increased, the inverted state exhibits a cascade of “resurrections,” i.e., it becomes stabilized after its instability, destabilize again, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998